3.361 \(\int \frac{\left (d+e x^2\right )^{3/2}}{x \left (a+b x^2+c x^4\right )} \, dx\)

Optimal. Leaf size=346 \[ -\frac{\left (-c d \left (d \sqrt{b^2-4 a c}-4 a e\right )+a e^2 \sqrt{b^2-4 a c}-b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{2} a \sqrt{c} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}-\frac{\left (-c d \left (d \sqrt{b^2-4 a c}+4 a e\right )+a e^2 \sqrt{b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2} a \sqrt{c} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{a} \]

[Out]

-((d^(3/2)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/a) - ((a*Sqrt[b^2 - 4*a*c]*e^2 - c*
d*(Sqrt[b^2 - 4*a*c]*d - 4*a*e) - b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sq
rt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[c]*Sqrt
[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) - ((a*Sqrt[b^2 - 4*a*c]*e
^2 - c*d*(Sqrt[b^2 - 4*a*c]*d + 4*a*e) + b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqr
t[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[
c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

_______________________________________________________________________________________

Rubi [A]  time = 3.90841, antiderivative size = 346, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207 \[ -\frac{\left (-c d \left (d \sqrt{b^2-4 a c}-4 a e\right )+a e^2 \sqrt{b^2-4 a c}-b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{2} a \sqrt{c} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}-\frac{\left (-c d \left (d \sqrt{b^2-4 a c}+4 a e\right )+a e^2 \sqrt{b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2} a \sqrt{c} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{a} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x^2)^(3/2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

-((d^(3/2)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/a) - ((a*Sqrt[b^2 - 4*a*c]*e^2 - c*
d*(Sqrt[b^2 - 4*a*c]*d - 4*a*e) - b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sq
rt[d + e*x^2])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[c]*Sqrt
[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) - ((a*Sqrt[b^2 - 4*a*c]*e
^2 - c*d*(Sqrt[b^2 - 4*a*c]*d + 4*a*e) + b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqr
t[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[
c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x**2+d)**(3/2)/x/(c*x**4+b*x**2+a),x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [A]  time = 1.84176, size = 333, normalized size = 0.96 \[ -\frac{\frac{\left (-c d \left (d \sqrt{b^2-4 a c}+4 a e\right )+a e^2 \sqrt{b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}-\frac{\left (c d \left (d \sqrt{b^2-4 a c}-4 a e\right )-a e^2 \sqrt{b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x^2}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{\sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}}{\sqrt{2} a \sqrt{c} \sqrt{b^2-4 a c}}-\frac{d^{3/2} \log \left (\sqrt{d} \sqrt{d+e x^2}+d\right )}{a}+\frac{d^{3/2} \log (x)}{a} \]

Antiderivative was successfully verified.

[In]  Integrate[(d + e*x^2)^(3/2)/(x*(a + b*x^2 + c*x^4)),x]

[Out]

-((-(((-(a*Sqrt[b^2 - 4*a*c]*e^2) + c*d*(Sqrt[b^2 - 4*a*c]*d - 4*a*e) + b*(c*d^2
 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - b*e + Sqrt[b^2
 - 4*a*c]*e]])/Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) + ((a*Sqrt[b^2 - 4*a*c]
*e^2 - c*d*(Sqrt[b^2 - 4*a*c]*d + 4*a*e) + b*(c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*S
qrt[c]*Sqrt[d + e*x^2])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/Sqrt[2*c*d - (
b + Sqrt[b^2 - 4*a*c])*e])/(Sqrt[2]*a*Sqrt[c]*Sqrt[b^2 - 4*a*c])) + (d^(3/2)*Log
[x])/a - (d^(3/2)*Log[d + Sqrt[d]*Sqrt[d + e*x^2]])/a

_______________________________________________________________________________________

Maple [C]  time = 0.039, size = 388, normalized size = 1.1 \[{\frac{7}{24\,a} \left ( e{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-{\frac{1}{a}{d}^{{\frac{3}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,d+2\,\sqrt{d}\sqrt{e{x}^{2}+d} \right ) } \right ) }+{\frac{3\,d}{8\,a}\sqrt{e{x}^{2}+d}}+{\frac{{x}^{3}}{6\,a}{e}^{{\frac{3}{2}}}}-{\frac{e{x}^{2}}{8\,a}\sqrt{e{x}^{2}+d}}+{\frac{3\,dx}{4\,a}\sqrt{e}}-{\frac{1}{4\,a}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{8}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{6}+ \left ( 16\,a{e}^{2}-8\,bde+6\,c{d}^{2} \right ){{\it \_Z}}^{4}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){{\it \_Z}}^{2}+c{d}^{4} \right ) }{\frac{ \left ( -a{e}^{2}+c{d}^{2} \right ){{\it \_R}}^{6}+d \left ( -5\,a{e}^{2}+4\,bde-3\,c{d}^{2} \right ){{\it \_R}}^{4}+{d}^{2} \left ( 5\,a{e}^{2}-4\,bde+3\,c{d}^{2} \right ){{\it \_R}}^{2}+a{d}^{3}{e}^{2}-c{d}^{5}}{{{\it \_R}}^{7}c+3\,{{\it \_R}}^{5}be-3\,{{\it \_R}}^{5}cd+8\,{{\it \_R}}^{3}a{e}^{2}-4\,{{\it \_R}}^{3}bde+3\,{{\it \_R}}^{3}c{d}^{2}+{\it \_R}\,b{d}^{2}e-{\it \_R}\,c{d}^{3}}\ln \left ( \sqrt{e{x}^{2}+d}-x\sqrt{e}-{\it \_R} \right ) }}-{\frac{5\,{d}^{2}}{8\,a} \left ( \sqrt{e{x}^{2}+d}-x\sqrt{e} \right ) ^{-1}}-{\frac{{d}^{3}}{24\,a} \left ( \sqrt{e{x}^{2}+d}-x\sqrt{e} \right ) ^{-3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x^2+d)^(3/2)/x/(c*x^4+b*x^2+a),x)

[Out]

7/24/a*(e*x^2+d)^(3/2)-1/a*d^(3/2)*ln((2*d+2*d^(1/2)*(e*x^2+d)^(1/2))/x)+3/8/a*(
e*x^2+d)^(1/2)*d+1/6/a*e^(3/2)*x^3-1/8/a*e*(e*x^2+d)^(1/2)*x^2+3/4/a*e^(1/2)*x*d
-1/4/a*sum(((-a*e^2+c*d^2)*_R^6+d*(-5*a*e^2+4*b*d*e-3*c*d^2)*_R^4+d^2*(5*a*e^2-4
*b*d*e+3*c*d^2)*_R^2+a*d^3*e^2-c*d^5)/(_R^7*c+3*_R^5*b*e-3*_R^5*c*d+8*_R^3*a*e^2
-4*_R^3*b*d*e+3*_R^3*c*d^2+_R*b*d^2*e-_R*c*d^3)*ln((e*x^2+d)^(1/2)-x*e^(1/2)-_R)
,_R=RootOf(c*_Z^8+(4*b*e-4*c*d)*_Z^6+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^4+(4*b*d^2*e-
4*c*d^3)*_Z^2+c*d^4))-5/8/a*d^2/((e*x^2+d)^(1/2)-x*e^(1/2))-1/24/a*d^3/((e*x^2+d
)^(1/2)-x*e^(1/2))^3

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x^{2} + d\right )}^{\frac{3}{2}}}{{\left (c x^{4} + b x^{2} + a\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x^2 + d)^(3/2)/((c*x^4 + b*x^2 + a)*x),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^(3/2)/((c*x^4 + b*x^2 + a)*x), x)

_______________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x^2 + d)^(3/2)/((c*x^4 + b*x^2 + a)*x),x, algorithm="fricas")

[Out]

Timed out

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (d + e x^{2}\right )^{\frac{3}{2}}}{x \left (a + b x^{2} + c x^{4}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x**2+d)**(3/2)/x/(c*x**4+b*x**2+a),x)

[Out]

Integral((d + e*x**2)**(3/2)/(x*(a + b*x**2 + c*x**4)), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x^2 + d)^(3/2)/((c*x^4 + b*x^2 + a)*x),x, algorithm="giac")

[Out]

Timed out